翻訳と辞書
Words near each other
・ Triangular alopecia
・ Triangular arbitrage
・ Triangular array
・ Triangular bifrustum
・ Triangular bipyramid
・ Triangular cartilage
・ Triangular Chess
・ Triangular coordinates
・ Triangular cupola
・ Triangular decomposition
・ Triangular distribution
・ Triangular division
・ Triangular face
・ Triangular fibrocartilage
・ Triangular Football League
Triangular function
・ Triangular hebesphenorotunda
・ Triangular interval
・ Triangular kidneyshell
・ Triangular ligament
・ Triangular matrix
・ Triangular matrix ring
・ Triangular network coding
・ Triangular number
・ Triangular orthobicupola
・ Triangular prism
・ Triangular prismatic honeycomb
・ Triangular routing
・ Triangular space
・ Triangular theory of love


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Triangular function : ウィキペディア英語版
Triangular function

The triangular function (also known as the triangle function, hat function, or tent function) is defined either as:
:
\begin
\operatorname(t) = \and (t) \quad
&\overset} \ \max(1 - |t|, 0) \\
&=
\begin
1 - |t|, & |t| < 1 \\
0, & \mbox
\end
\end

or, equivalently, as the convolution of two identical unit rectangular functions:
:
\begin
\operatorname(t) = \operatorname(t)
* \operatorname(t) \quad
&\overset} \int_^\infty \mathrm(\tau) \cdot \mathrm(t-\tau)\ d\tau\\
&= \int_^\infty \mathrm(\tau) \cdot \mathrm(\tau-t)\ d\tau .
\end

The triangular function can also be represented as the product of the rectangular and absolute value functions:
: \operatorname(t) = \operatorname(t/2) \left ( 1 - \left |t \right | \right )
The function is useful in signal processing and ''communication systems engineering'' as a representation of an idealized signal, and as a prototype or kernel from which more realistic signals can be derived. It also has applications in pulse code modulation as a pulse shape for transmitting digital signals and as a matched filter for receiving the signals. It is also equivalent to the triangular window sometimes called the Bartlett window.
Note that in some cases the triangle function may be defined to have a base of length 1 instead of length 2:

\begin
\operatorname(t) = \and (t) \quad
&\overset} \ \max(1 - |2t|, 0) \\
&=
\begin
1 - |2t|, & |2t| < 1 \\
0, & \mbox
\end
\end

==Scaling==
For any parameter, a \ne 0\, :
:
\begin
\operatorname(t/a) &= \int_^\infty \mathrm(\tau) \cdot \mathrm(\tau - t/a)\ d\tau \\
&=
\begin
1 - |t/a|, & |t| < |a| \\
0, & \mbox .
\end
\end


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Triangular function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.